
Structural Change Distilling of Ansible Roles

Presentation Abstract

Ruben Opdebeeck

Ahmed Zerouali

Camilo Velázquez-Rodríguez

Coen De Roover

ropdebee@vub.be

azeroual@vub.be

cavelazq@vub.be

cderoove@vub.be

mailto:ropdebee@vub.be

Ansible Galaxy

2

Ecosystem of roles
“Ansible’s maven”

25k+ roles
~6k authors

33

Semantic Versioning in Ansible Roles

galaxy.ansible.com

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

role 1 (1.0.0, 1.1.0), (1.1.0, 2.0.0), . . .

role 2 (v1.1.1, v1.2.0), (v3.0.4, v3.0.5), . . .

role 3

role 4 (0.1.1, 1.0.0), (1.0.0, 1.1.0) . . .

.

role 2: (v1.1.1 -> v1.2.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: (1.1.0 -> 2.0.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: (1.0.0 -> 1.1.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: 1.0.0 role 1: 1.1.0

�!

role 1: 1.0.0 role 1: 1.1.0

�!

role 1: 1.0.0 role 1: 1.1.0

�!

Role v1 v2 #TaskEdit . . .

role 1 1.0.0 1.1.0 1 . . .

role 1 1.1.0 2.0.0 3 . . .

role 2 v1.1.1 v1.2.0 0 . . .

.

1 2 3 4

5a

5b

2

1 Role discovery

Role collection 4

3 Version extraction

Syntactical di↵erencing 5b

5a Structural model construction

Structural di↵erencing

24 640 roles 23 681 repos 80 997 versions

R. Opdebeeck, A. Zeraouli, C. Velázquez-Rodríguez, C. De Roover. “Does Infrastructure as Code Adhere to Semantic Versioning? An
Analysis of Ansible Role Evolution”, In Proc. 20th International Working Conference on Source Code Analysis and Manipulation, 2020.

33

Semantic Versioning in Ansible Roles

galaxy.ansible.com

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

{ "name": "...",
"github user": "...",
"github repo": "...",
"download count": "...",
... }

role 1 (1.0.0, 1.1.0), (1.1.0, 2.0.0), . . .

role 2 (v1.1.1, v1.2.0), (v3.0.4, v3.0.5), . . .

role 3

role 4 (0.1.1, 1.0.0), (1.0.0, 1.1.0) . . .

.

role 2: (v1.1.1 -> v1.2.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: (1.1.0 -> 2.0.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: (1.0.0 -> 1.1.0)

tasks/main.yml +40 -18
tasks/debian.yml +0 -7
defaults/main.yml +3 -0
...

role 1: 1.0.0 role 1: 1.1.0

�!

role 1: 1.0.0 role 1: 1.1.0

�!

role 1: 1.0.0 role 1: 1.1.0

�!

Role v1 v2 #TaskEdit . . .

role 1 1.0.0 1.1.0 1 . . .

role 1 1.1.0 2.0.0 3 . . .

role 2 v1.1.1 v1.2.0 0 . . .

.

1 2 3 4

5a

5b

2

1 Role discovery

Role collection 4

3 Version extraction

Syntactical di↵erencing 5b

5a Structural model construction

Structural di↵erencing

24 640 roles 23 681 repos 80 997 versions

R. Opdebeeck, A. Zeraouli, C. Velázquez-Rodríguez, C. De Roover. “Does Infrastructure as Code Adhere to Semantic Versioning? An
Analysis of Ansible Role Evolution”, In Proc. 20th International Working Conference on Source Code Analysis and Manipulation, 2020.

Today

Ansible Roles

4

roles/nginx/tasks/main.yml

- name: Ensure nginx is installed
 apt:
 name: nginx
 state: present
- name: Ensure nginx configuration is present
 file:
 path: "{{ item }}"
 dest: "{{ nginx_dir }}"
 loop: "{{ conf_files }}"

roles/nginx/defaults/main.yml

conf_files:
 - files/nginx.conf

roles/nginx/vars/main.yml

nginx_conf_directory: /etc/nginx

Reusable Collections of Tasks
roles/nginx/meta/main.yml

galaxy_info:
 role_name: nginx
 author: ROpdebee
 description: Installs nginx
 license: "GPL3"
 min_ansible_version: 2.4
 platforms:
 - name: Debian
 versions:
 - all

Ansible Roles

4

roles/nginx/tasks/main.yml

- name: Ensure nginx is installed
 apt:
 name: nginx
 state: present
- name: Ensure nginx configuration is present
 file:
 path: "{{ item }}"
 dest: "{{ nginx_dir }}"
 loop: "{{ conf_files }}"

roles/nginx/defaults/main.yml

conf_files:
 - files/nginx.conf

roles/nginx/vars/main.yml

nginx_conf_directory: /etc/nginx

Reusable Collections of Tasks
roles/nginx/meta/main.yml

galaxy_info:
 role_name: nginx
 author: ROpdebee
 description: Installs nginx
 license: "GPL3"
 min_ansible_version: 2.4
 platforms:
 - name: Debian
 versions:
 - all

Tasks
Basic building blocks

Ansible Roles

4

roles/nginx/tasks/main.yml

- name: Ensure nginx is installed
 apt:
 name: nginx
 state: present
- name: Ensure nginx configuration is present
 file:
 path: "{{ item }}"
 dest: "{{ nginx_dir }}"
 loop: "{{ conf_files }}"

roles/nginx/defaults/main.yml

conf_files:
 - files/nginx.conf

roles/nginx/vars/main.yml

nginx_conf_directory: /etc/nginx

Reusable Collections of Tasks
roles/nginx/meta/main.yml

galaxy_info:
 role_name: nginx
 author: ROpdebee
 description: Installs nginx
 license: "GPL3"
 min_ansible_version: 2.4
 platforms:
 - name: Debian
 versions:
 - all

Variables

Ansible Roles

4

roles/nginx/tasks/main.yml

- name: Ensure nginx is installed
 apt:
 name: nginx
 state: present
- name: Ensure nginx configuration is present
 file:
 path: "{{ item }}"
 dest: "{{ nginx_dir }}"
 loop: "{{ conf_files }}"

roles/nginx/defaults/main.yml

conf_files:
 - files/nginx.conf

roles/nginx/vars/main.yml

nginx_conf_directory: /etc/nginx

Reusable Collections of Tasks
roles/nginx/meta/main.yml

galaxy_info:
 role_name: nginx
 author: ROpdebee
 description: Installs nginx
 license: "GPL3"
 min_ansible_version: 2.4
 platforms:
 - name: Debian
 versions:
 - all

Role metadata
Information for Galaxy

Structural Representation of Ansible Roles

5

roles/nginx/defaults/main.yml

conf_files:
 - files/nginx.conf

roles/nginx/vars/main.yml

nginx_conf_directory: /etc/nginx

Role: nginx

DefaultsFile: defaults/main.yml VarsFile: vars/main.yml

DefaultVariable: ‘conf_files’ RoleVariable: ‘nginx_dir’

files/nginx.conf /etc/nginx

defaults[0] vars[0]

content[0] content[0]

content[0] content

Structural Representation of Ansible Roles

5

roles/nginx/meta/main.yml

galaxy_info:
 role_name: nginx
 author: ROpdebee
 description: Installs nginx
 license: "GPL3"
 min_ansible_version: 2.4
 platforms:
 - name: Debian
 versions:
 - all

Role: nginx

DefaultsFile: defaults/main.yml VarsFile: vars/main.yml

DefaultVariable: ‘conf_files’ RoleVariable: ‘nginx_dir’

files/nginx.conf /etc/nginx

defaults[0] vars[0]

content[0] content[0]

content[0] content

MetaFile: meta/main.yml

MetaBlock

nginx

ROpdebee

Installs nginx

GPL3

2.4

Debian: all

meta_file

meta_block

name

author

license

description

min_ansible_version

platforms[0]

roles/nginx/tasks/main.yml

- name: Ensure nginx is installed
 apt:
 name: nginx
 state: present
- name: Ensure nginx configuration is present
 file:
 path: "{{ item }}"
 dest: "{{ nginx_dir }}"
 loop: "{{ conf_files }}"

Role: nginx

DefaultsFile: defaults/main.yml VarsFile: vars/main.yml

DefaultVariable: ‘conf_files’ RoleVariable: ‘nginx_dir’

files/nginx.conf /etc/nginx

defaults[0] vars[0]

content[0] content[0]

content[0] content

MetaFile: meta/main.yml

MetaBlock

nginx

ROpdebee

Installs nginx

GPL3

2.4

Debian: all

meta_file

meta_block

name

author

license

description

min_ansible_version

platforms[0]

TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

tasks[0]

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Structural Representation of Ansible Roles

5

Change Distilling

6

Extracting Changes After the Fact
Empirical Software Engineering (2019) 24: 491–535
https://doi.org/10.1007/s10664-018-9644-3

Querying distilled code changes to extract executable
transformations

Reinout Stevens1 · TimMolderez2 ·Coen De Roover2

Published online: 30 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Change distilling algorithms compute a sequence of fine-grained changes that, when exe-
cuted in order, transform a given source AST into a given target AST. The resulting change
sequences are used in the field of mining software repositories to study source code evo-
lution. Unfortunately, detecting and specifying source code evolutions in such a change
sequence is cumbersome. We therefore introduce a tool-supported approach that identifies
minimal executable subsequences in a sequence of distilled changes that implement a par-
ticular evolution pattern, specified in terms of intermediate states of the AST that undergoes
each change. This enables users to describe the effect of multiple changes, irrespective of
their execution order, while ensuring that different change sequences that implement the
same code evolution are recalled. Correspondingly, our evaluation is two-fold. We show
that our approach is able to recall different implementation variants of the same source code
evolution in histories of different software projects. We also evaluate the expressiveness and
ease-of-use of our approach in a user study.

Keywords Change distilling · Change querying · Logic meta-programming

1 Introduction

The use of a Version Control System (VCS) has become an industry best practice for devel-
oping software. Researchers in the field of mining software repositories (MSR) leverage the
resulting revision histories to study the evolution of software systems. However, most VCSs

Communicated by: Gabriele Bavota and Andrian Marcus

! Tim Molderez
tim.molderez@vub.be

Reinout Stevens
reinout@reinoutstevens.be

Coen De Roover
coen.de.roover@vub.be

1 Maxflow BVBA, Leuven, Belgium
2 Software Languages Lab, Vrije Universiteit Brussel, Ixelles, Belgium

Change Distilling: Tree Differencing for Fine-
Grained Source Code Change Extraction

Beat Fluri, Student Member, IEEE, Michael Würsch, Student Member, IEEE,
Martin Pinzger, Member, IEEE, and Harald C. Gall, Member, IEEE

Abstract—A key issue in software evolution analysis is the identification of particular changes that occur across several versions of a
program. We present change distilling, a tree differencing algorithm for fine-grained source code change extraction. For that, we have

improved the existing algorithm by Chawathe et al. for extracting changes in hierarchically structured data [8]. Our algorithm extracts
changes by finding both a match between the nodes of the compared two abstract syntax trees and a minimum edit script that can

transform one tree into the other given the computed matching. As a result, we can identify fine-grained change types between
program versions according to our taxonomy of source code changes. We evaluated our change distilling algorithm with a benchmark

that we developed, which consists of 1,064 manually classified changes in 219 revisions of eight methods from three different open
source projects. We achieved significant improvements in extracting types of source code changes: Our algorithm approximates the

minimum edit script 45 percent better than the original change extraction approach by Chawathe et al. We are able to find all occurring
changes and almost reach the minimum conforming edit script, that is, we reach a mean absolute percentage error of 34 percent,

compared to the 79 percent reached by the original algorithm. The paper describes both our change distilling algorithm and the results
of our evaluation.

Index Terms—Source code change extraction, tree-differencing algorithms, software repositories, software evolution analysis.

Ç

1 INTRODUCTION

SINCE Lehman’s Laws of Program Evolution from the
1980s [25], it has been well understood that software has

to be adapted to changing requirements and environments
or it becomes progressively less useful. Change is broadly
accepted as a crucial part of a software’s life cycle. As a
consequence, in recent years, several techniques and tools
have been developed to aid software engineers in main-
taining and evolving large complex software systems. For
instance, Ying et al. or Zimmermann et al. developed
approaches that guide programmers along related changes
by telling them “programmers who changed these functions
also changed. . . ” [45], [47]. The Hipikat tool of !Cubrani"c
et al. used project history information to provide recom-
mendations for a modification task [9]. Gall et al. detected
possible maintainability hot spots by analyzing cochange
relationships of modules [13].

We argue that such techniques and tools are valuable but

suffer from the low quality of information available for

changes. Typically, such information, in particular for source

code, is stored by versioning systems (for example, CVS or

Subversion). They keep track of changes by storing the text

lines added and/or deleted from a particular file. Structural

changes in the source code are not considered at all.

More sophisticated approaches are able to narrow down
changes to the method level, but fail in further qualifying
changes such as the addition of a method invocation in the
else branch of an if-statement. Furthermore, a classification
of changes according to their impact on other source code
entities is missing. In particular, the latter information is
important to improving the quality of software evolution
results and, as a consequence, to providing better support
for programmers and system analysts.

Since source code can be represented as abstract syntax
trees (ASTs), tree differencing can be used to extract
detailed change information. This approach is promising
because exact information on each entity and statement is
available in an AST. In our previous work [12], we built a
taxonomy of source code changes that defines source code
changes according to tree edit operations in the AST and
classifies each change type with a significance level. The level
expresses how strongly a change may impact other source
code entities and whether a change may be functionality
modifying or functionality preserving. In our taxonomy, we
focus on object-oriented programming languages (OOPLs)
and Java in particular. By adjusting the change type
extraction, the taxonomy can also be used for other OOPLs.
In total, our taxonomy defines 35 change types.

In this paper, we present change distilling, a tree-
differencing algorithm for fine-grained source code change
extraction. For that, we improved the existing algorithm for
extracting changes in hierarchically structured data by
Chawathe et al. [8]. This algorithm finds changes according
to basic tree edit operations such as insert, delete, move, or
update of tree nodes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007 725

. The authors are with the Department of Informatics, University of Zurich,
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland.
E-mail: {fluri, wuersch, pinzger, gall}@ifi.uzh.ch.

Manuscript received 15 Jan. 2007; revised 13 July 2007; accepted 23 July
2007; published online 3 Aug. 2007.
Recommended for acceptance by H. Muller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0012-0107.
Digital Object Identifier no. 10.1109/TSE.2007.70731.

0098-5589/07/$25.00 ! 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Vrije Universiteit Brussel. Downloaded on November 30,2020 at 16:05:15 UTC from IEEE Xplore. Restrictions apply.

Fine-grained and Accurate Source Code Differencing

Jean-Rémy Falleri
Univ. Bordeaux,

LaBRI, UMR 5800
F-33400, Talence, France

falleri@labri.fr

Floréal Morandat
Univ. Bordeaux,

LaBRI, UMR 5800
F-33400, Talence, France

fmoranda@labri.fr

Xavier Blanc
Univ. Bordeaux,

LaBRI, UMR 5800
F-33400, Talence, France

xblanc@labri.fr

Matias Martinez
INRIA and University of Lille,

France
matias.martinez@inria.fr

Martin Monperrus
INRIA and University of Lille,

France
martin.monperrus@inria.fr

ABSTRACT

At the heart of software evolution is a sequence of edit actions,
called an edit script, made to a source code file. Since software
systems are stored version by version, the edit script has to be
computed from these versions, which is known as a complex
task. Existing approaches usually compute edit scripts at the
text granularity with only add line and delete line actions.
However, inferring syntactic changes from such an edit script
is hard. Since moving code is a frequent action performed
when editing code and it should also be taken into account. In
this paper, we tackle these issues by introducing an algorithm
computing edit scripts at the abstract syntax tree granularity
including move actions. Our objective is to compute edit
scripts that are short and close to the original developer
intent. Our algorithm is implemented in a freely-available
and extensible tool that has been intensively validated.

Categories and Subject Descriptors: D.2.3 [Software
Engineering]: Coding Tools and Techniques

General Terms: Algorithms, Experimentation

Keywords: Software evolution, Program comprehension,
Tree differencing, AST.

1. INTRODUCTION
The first law of software evolution states that almost all

software systems have to evolve to be satisfactory [19]. Since
this law was formulated, many studies have been performed
to better understand how software systems evolve, and forms
what is called the software evolution research field [21].

There is global software evolution (e.g. evolution of require-
ments, of execution environments, ...) and local software
evolution (evolution of source code files). In this paper, we
focus on the latter, that is on understanding how source code
files evolve. In particular, we focus on edit scripts, that are
sequences of edit actions made to a source code file. Usually,
since software is stored in version control systems, edit scripts

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE’14, September 15-19, 2014, Vasteras, Sweden.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3013-8/14/09 ...$15.00.

http://dx.doi.org/10.1145/2642937.2642982.

are computed between two versions of a same file. The goal
of an edit script is to accurately reflect the actual change
that has been performed on a file.
Edit scripts are used by developers on a daily basis. For

example, the Unix diff tool takes as input two versions of
a source code file and performs the Myers algorithm [24]
at the text line granularity and returns an edit script indi-
cating which lines have been added or deleted. However,
the limitations of diff are twofold. First, it only computes
additions and deletions and does not consider other kinds of
edit actions such as update and move. Second, it works at a
granularity (the text line) that is both coarse grain and not
aligned with the source code structure: the abstract syntax
tree.
To overcome this main limitation, there are algorithms

that can work at the abstract syntax tree (AST) level [13].
The main advantage in using the AST granularity is that the
edit script directly refers to the structure of the code. For
instance, if an edit action is the addition of a new function
node, it clearly means that a new function has been added
in the code. Despite several key contributions (e.g. [13]), the
problem of computing AST edit scripts is still open, with
two main challenges: handling move actions, and scaling to
fine-grained ASTs with thousands of nodes1. This is where
this paper makes a contribution.

To design our novel algorithm, we take the viewpoint of the
developer: she is never interested in the theoretical shortest
edit script. She is rather interested in having an edit script
that reflects well the actual changes that happened. Thus
our objective is not to find the shortest sequence of actions
between two versions, but a sequence that reflects well the
developer intent. Consequently, we devise an algorithm based
on heuristics that contain pragmatic rules on what a good
edit script is, and as importantly, that is efficient and scales
to large ASTs. This algorithm has been implemented within
a freely-available and extensible tool2.
To sum up, our contributions are:

• a novel efficient AST differencing algorithm that takes
into account move actions, and its implementation;

1The best known algorithm with add, delete and update
actions has a O(n3) time complexity with n being the number
of nodes of the AST [27]. Computing the minimum edit
script that can include move node actions is known to be
NP-hard [4]
2github.com/jrfaller/gumtree

GumTree ChangeDistiller ChangeNodes

Change Distilling of Ansible Roles

7

Task Task

apt

nginx

apt

nginx

present

action

args.name

action

args.name

args.state

v2v1

Task Task

apt

nginx

present

apt

nginx

action

args.name

args.state

action

args.name

v2v1

Task Task

Foo Bar

name name

.

v2v1

DefaultsFile:
defaults/main.yml

DefaultVariable:
‘var1’

DefaultVariable:
‘var2’

DefaultsFile:
defaults/main.yml

DefaultVariable:
‘var2’

DefaultVariable:
‘var1’

content[0] content[1] content[0] content[1]

v1 v2

Block

Task Task

True

. . .

. . .
become

block[0] block[1]

Block

Task Task

True

. . .

. . .
become

block[0] block[1]

v1 v2

Additions Removals Updates

Local relocation

Global relocation

Change Distilling of Ansible Roles

7

Task Task

apt

nginx

apt

nginx

present

action

args.name

action

args.name

args.state

v2v1

Task Task

apt

nginx

present

apt

nginx

action

args.name

args.state

action

args.name

v2v1

Task Task

Foo Bar

name name

.

v2v1

DefaultsFile:
defaults/main.yml

DefaultVariable:
‘var1’

DefaultVariable:
‘var2’

DefaultsFile:
defaults/main.yml

DefaultVariable:
‘var2’

DefaultVariable:
‘var1’

content[0] content[1] content[0] content[1]

v1 v2

Block

Task Task

True

. . .

. . .
become

block[0] block[1]

Block

Task Task

True

. . .

. . .
become

block[0] block[1]

v1 v2

Additions Removals Updates

Local relocation

Global relocation

Too fine-grained

Order doesn’t
always matter

Name has no semantic relevance
Update shouldn’t matter

- name: Ensure nginx is installed
 apt:
 name: nginx
 state: present

- name: Ensure nginx is installed (Debian)
 apt:
 name: nginx
 state: present

Task Similarity

8

simtask(T1, T2) =

P
kw2T1\T2

w(kw)
P

kw2T1[T2
w(kw)

1

“Weighted Jaccard”

- name: Ensure nginx is installed
 pacman:
 name: nginx
 state: present

simtask(T1, T2) =

P
kw2T1\T2

w(kw)
P

kw2T1[T2
w(kw)

w(kw) =

⇢
1, if kw 2 {action, args, when, loop, loop control}
0.5, otherwise

1

0.71

- name: Ensure nginx is installed
 apt:
 state: present
 name: nginx

1.00

0.85

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Matching

9v1 v2

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Matching

9

simtask = 0

v1 v2

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Matching

9v1 v2

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Matching

9

simtask = 1

v1 v2

TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Matching

9

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

v1 v2

TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Matching

9

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

v1 v2

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Relocation Matching

10v1 v2

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Relocation Matching

10

simtask = 0.57

v1 v2

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Relocation Matching

10

simtask = 0.86

v1 v2

TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]

Task Relocation Matching

10v1 v2

11

0 20 40 60 80 100
proportion of releases

DefaultVariable

Task

MetaEdit

Block

ConstantVariable

Platform

TasksFile

ty
p
e

major

minor

patch

0 20 40 60 80 100
proportion of releases

tasks

defaults

meta

templates

vars

tests

molecule

handlers

di
re

ct
or

y

major

minor

patch

Syntactical changes Structural changes

~30% of releases contain no structural change

Structural Changes in Role Releases

R. Opdebeeck, A. Zeraouli, C. Velázquez-Rodríguez, C. De Roover. “Does Infrastructure as Code Adhere to Semantic Versioning? An
Analysis of Ansible Role Evolution”, In Proc. 20th International Working Conference on Source Code Analysis and Manipulation, 2020.

Conclusion

12

Structural Representation of Ansible Roles

5

roles/nginx/tasks/main.yml

- name: Ensure nginx is installed
 apt:
 name: nginx
 state: present
- name: Ensure nginx configuration is present
 file:
 path: "{{ item }}"
 dest: "{{ nginx_dir }}"
 loop: "{{ conf_files }}"

Role: nginx

DefaultsFile: defaults/main.yml VarsFile: vars/main.yml

DefaultVariable: ‘conf_files’ RoleVariable: ‘nginx_dir’

files/nginx.conf /etc/nginx

defaults[0] vars[0]

content[0] content[0]

content[0] content

MetaFile: meta/main.yml

MetaBlock

nginx

ROpdebee

Installs nginx

GPL3

2.4

Debian: all

meta_file

meta_block

name

author

license

description

min_ansible_version

platforms[0]

TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

tasks[0]

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Change Distilling of Ansible Roles

8

Task Task

apt

nginx

apt

nginx

present

action

args.name

action

args.name

args.state

v2v1

Task Task

apt

nginx

present

apt

nginx

action

args.name

args.state

action

args.name

v2v1

Task Task

Foo Bar

name name

.

v2v1

DefaultsFile:
defaults/main.yml

DefaultVariable:
‘var1’

DefaultVariable:
‘var2’

DefaultsFile:
defaults/main.yml

DefaultVariable:
‘var2’

DefaultVariable:
‘var1’

content[0] content[1] content[0] content[1]

v1 v2

Block

Task Task

True

. . .

. . .
become

block[0] block[1]

Block

Task Task

True

. . .

. . .
become

block[0] block[1]

v1 v2

Additions Removals Updates

Internal relocation

External relocation

Too !ne-grained

Order doesn’t
always matter

Name has no semantic relevance
Update shouldn’t matter

- name: Ensure nginx is installed
 apt:
 name: nginx
 state: present

- name: Ensure nginx is installed (Debian)
 apt:
 name: nginx
 state: present

Task Similarity

9

simtask(T1, T2) =

P
kw2T1\T2

w(kw)
P

kw2T1[T2
w(kw)

1

“Weighted Jaccard”

- name: Ensure nginx is installed
 pacman:
 name: nginx
 state: present

simtask(T1, T2) =

P
kw2T1\T2

w(kw)
P

kw2T1[T2
w(kw)

w(kw) =

⇢
1, if kw 2 {action, args, when, loop, loop control}
0.5, otherwise

1

0.71

- name: Ensure nginx is installed
 apt:
 state: present
 name: nginx

1.00

0.85
TasksFile: tasks/main.yml

Block

Task

include_tasks

{{ ansible_os_family }}.yml

Task

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0]

block[1]

action

args._raw_params

name

action

args.path

args.dest

loop

TasksFile: tasks/Debian.yml

Block

Task

...

apt

nginx

present

block[0]

name

action

args.name

args.state

TasksFile: tasks/Archlinux.yml

Block

Task

...

pacman

nginx

present

block[0]

name

action

args.name

args.state

content[0]content[0]TasksFile: tasks/main.yml

Block

Task Task

...

apt

nginx

present

...

file

{{ item }}

{{ nginx_dir }}

{{ conf_files }}

content[0]

block[0] block[1]

name

action

args.name

args.state

name

action

args.path

args.dest

loop

Task Relocation Matching

11

simtask = 0.86

v1 v2

