
SearchSECO: A Worldwide Index of the
Open Source Software Ecosystem
Slinger Jansen Siamak Farshidi Georgios Gousios
Utrecht University, CWI UvA TUDelft, Facebook

Tijs van der Storm Joost Visser Magiel Bruntink
Groningen, CWI Leiden Uni SIG

Problem
statement

It is possible to find source code in
the software ecosystem at

● file level (SHG) or
● line level,

but not at method level.

Our Suggested
Solution:
SearchSECO

SearchSECO maintains an index of all source
code in the worldwide software ecosystem.

1. We continuously spider the software
ecosystem for source code.

2. We extract the abstract syntax tree and
hash it for quick access and search.

3. We annotate the source code and store it
for posterity.

4. We provide a search engine for
worldwide method and AST search.

5. We create and analyze models for making
the software ecosystem a safer place.

We spider the worldwide software ecosystem

How do we compare to other source code search engines?

Affordances of
SearchSECO

Relationships between methods

● Study method co-evolution across projects

● Weaknesses tracked, fixes propagated

Relationships between authors

● Fine grained authorship

● Copy-paste behavior (StackOverflow)

Relationships between software projects

● Establish package dependencies and

cohesion

● License violations

RC1: Mining the Worldwide Software Ecosystem

We develop a job scheduler that maintains its list of jobs to be

done

Worker nodes can pick up these jobs in the ecosystem, similar

to the CrossFlow [1]

Examples of automated tasks are:

● Spider an existing project repository for updates

● Extract code fragments from Stackoverflow

● Parse a new project and identify the languages used

● Send out alerts to owners of encountered code fragments

● Check whether evidence of a code fragment still exists

Automated tasks will be incentivized to
ensure positive contributions to the
community.

Some jobs may stay in the scheduler for a
long time; as for these jobs, the correct
parser may not yet be available.

In this way, we can easily prioritize which
parser needs to be most urgently built.

[2] Kolovos, P. Neubauer, K. Barmpis, N. Matragkas, and R. Paige, “Crossflow: a framework for distributed mining of software
repositories,” in 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR) IEEE, 2019, pp. 155–159.

We make worldwide software ecosystem searchable

Language parametric clone detection

Currently, we have parsers available for Java, C,

and C++ from

● FASTEN https://www.fasten-project.eu/

● srcML https://srcml.org

● Rascal https://www.rascal-mpl.org/

RC2.1: Parsing Worldwide Software Ecosystem

Hashing the Worldwide Software Ecosystem

We use VUDDY [1], a high performance method

search that hashes ASTs and method signatures

for C.

We extend the technology to include other

languages (js?)

[1] Kim, S., & Lee, H. (2018). Software systems at risk: An empirical study of cloned vulnerabilities in practice. computers
& security, 77, 720-736.

https://www.fasten-project.eu/
https://srcml.org
https://www.rascal-mpl.org/

We use these models to track

dependencies induced by call-graphs and

other relations (e.g., inheritance).

Rascal already supports the extensible M3

model [1], for single-language source

projects.

RC2.2: Generic Models for Cross-lang Dependencies

We will extend this to support modeling

source code facts across different

programming language SECOs, as well as

the representation of metadata such as

authorship, provenance, and versioning.

[1] Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. Steindorfer, and J. Vinju, “M3: a General Model for Code
Analytics in Rascal,” in Proceedings of the first International Workshop on Software Analytics, SWAN, 2015.

RC2.3: AI-assisted development of robust,
extraction-oriented parsers

Developing parsers for full programming languages requires significant effort.

We will investigate new AI-based techniques to (semi-)automatically derive
parsers using a combination of grammar inference techniques and corpus
analysis.

These parsers might not be accurate enough for developing a compiler but will
be sufficiently fine-grained to extract function bodies and identify call sites.

RC2.4: ``Diff''-based parsing and extraction

Parsing and analyzing the code of software projects from scratch will not scale.

Instead of parsing/analyzing full source files, these techniques will analyze the
difference between versions of files (e.g., as derived from Github) and incrementally
update the SMKB.

Explore how methods mutate for AI assisted mutation prediction.

RC3: AI Assisted Graph Mining for Vulnerabilities

● Structure known vulnerabilities from VulnCode (https://www.vulncode-db.com/) so that the

vulnerabilities and permutations of such vulnerabilities can best be found in our code database.

● Establish ways to automatically propose fixes and alert code maintainers.

● Pattern-based graph searches that can be used to detect malware.

As the fixes in vulnerability databases are typically well structured and relatively easy to fix, we could

automatically generate pull requests for the code to be fixed.

Furthermore, if the tooling developed in this project is adopted widely, we could warn about vulnerable

code at the time of a commit.

Discussion
SearchSECO does not make the SMKB a surveillance instrument, we must use
design principles that do not easily link software engineers to their identity
information.

Can we use data access as a method to incentivize scientists to contribute?

How should we store the database? Distributed? Its estimated at 250TB.

Concluding

What do we need? Feedback and Funding! When do we need it? Now!
slinger.jansen@uu.nl

● SearchSECO: A Worldwide Index of the Open Source
Software Ecosystem

● We extract, parse, and store all the source code in the
world

● We create a shared infrastructure for researchers
worldwide

mailto:slinger.jansen@uu.nl

