An Empirical Study of Technical Debt Management
as a Motivation for Forking

' Mercy Njima
Department of Computer Science
University of Antwerp
Antwerp, Belgium
mercy.njima@uantwerpen.be

Abstract—Forking is an often used idiom in software ecosys-
tems where it allows for immediate reuse of existing software
packages. Further, reuse and forking address software engineer-
ing goals such as long term software quality. However, there
is a lack of sufficient knowledge exploring the validity and
applicability of forking as an approach to solve software quality
issues. In this position paper we present a plan to investigate
whether forking is a useful avenue for managing technical debt.

Index Terms—Forking, Software reuse, npm, SonarQube, Tech-
nical debt

I. INTRODUCTION

Software product line approaches advocate strategic, planned
reuse that yield predictable results. In practice though product
variants often emerge ad-hoc, when companies have to release
a new product that is similar, yet not identical, to existing ones
[1]. To implement new product functionality, developers often
fork an existing product and modify it to fit new requirements
using the “clone-and own” approach [2]. Forking provides a
rapid way to address new requirements by adapting an existing
solution [3].

Open source software provides an existing code base that
acts as a starting point for software developers to reuse and
create a software variant by forking an existing project. Prior
work has shown that code reuse can be beneficial in reducing
the time-to-market, improving software quality and boosting
overall productivity [4], [5]. Thus, platforms such as Node.js
have emerged to encourage reuse and facilitate code sharing
through packages or modules that are available on package
management platforms, such as the Node Package Manager
(npm) [6], [7].

First, developers may fork mainlines with a high technical
debt so that they address that technical debt and send back the
contributions to the mainlines (these kind of forks are called
social forks [8]). However, previous research shows that some
projects do not easily accept contributions into their repositories
[9]. When the contribution is rejected, the fork developer may
end up maintaining the fork and in the end it evolves into
a variant of the mainline with variant specific code. In fact
Zhou et al. [10] reports that many variant forks actually start
as social forks.

In addition to the aforementioned motivations and benefits,
we observe that reuse and forking may address other software

2" John Businge
Department of Computer Science
University of Antwerp
Antwerp, Belgium
john.businge @uantwerpen.be

3" Serge Demeyer
Department of Computer Science
University of Antwerp and Flanders Make
Antwerp, Belgium
serge.demeyer @uantwerpen.be

engineering goals such as long term software quality. High
quality code is code that incurs low maintenance costs and
allows for the fast integration of new team members. One of the
impediments to software quality is technical debt. “Technical
debt refers to a collection of design or implementation
constructs that are expedient in the short term, but set up
a technical context that can make future changes more costly
or impossible. It presents an actual or contingent liability
whose impact is limited to internal system qualities, primarily
maintainability and evolvability" [11].

II. BACKGROUND

Researchers have collected a large body of knowledge on
forking and the motivations for it. Robles et al. performed an
in depth study on several hundred forks and reported on the
date when the forking occurred, the reason of the fork, and the
outcome of the fork for the original and forking project [12].
Nyman et al. report on the possible benefit of forking serving
as an invisible hand in the long term sustainability of software
projects and safeguarding against unfavorable decisions from a
single developer or organization [13], [14]. Viseur reported on
a detailed study of twenty six open source projects highlighting
the motivations and impact of forking [15]. They found that
the main motivations of forking are technical divergences,
governance mismatches, end of the original project, license
change, conflict about trademark and strong cultural differences.
Businge et al. performed an exploratory study on clone-based
reuse practices for open-source Android apps [16]. They found
that the motivations for the fork variants were re-branding
and simple customisation, feature extensions, supporting of
the mainline and development of different, but related features.
Jing et al. explore why and how developers fork what from
whom in GitHub [17]. From their study they found that the
reasons developers fork projects are to submit pull requests,
add new features, fix bugs and keep copies of the original
repository.

To the best of our knowledge, this is the first study to
examine technical debt management as a motivation for forking.
However, Ernst et al., addressed the question of whether
requirements were a basis for a fork and they hypothesized that
forking was required to address the soft goals of maintainability
and usability [3]. They confirmed that indeed the fork had a

better code base and also satisfied the soft goals of usability
and maintainability.

We hypothesise that mainlines with higher values of technical
debt are likely to be associated with higher numbers of variant
forks. Thus, this paper proposes a study to investigate whether
forking is a potentially useful avenue for managing the technical
debt issues of maintainability and reliability.

III. EMPIRICAL STUDY DESIGN

We follow a mixed method approach to examine the
relationship between forking and technical debt. First, we mine
and analyse mainline forks from npm and later perform a
confirmatory analysis using a survey of the maintainers of the
forked projects.

A. Goal and Research Questions

The goal of the study is to investigate whether forking and
the creation of forked product variants are intended approaches
in managing technical debt. To this end, we plan to answer
the following research questions.

o RQI: Is there a relationship between the amount of forking
and the amount of technical debt?

« RQ2: How do open-source contributors perceive forking
as a way to manage technical debt?

B. Study Setup and Data Collection

To perform our study, we obtained a dataset of Node.js
packages from the npm registry on which we perform technical
debt analysis using the community edition of SonarQube. Fig
1 shows our intended workflow of the study.

Since its inception, npm has grown to become one of the
largest software ecosystems [18], [19]. We chose npm for
the following reasons: it provides API access to all package
releases and metadata, most npm packages point to a GitHub
repository and the npm registry and GitHub both show the
package’s README file, providing a common place where
more information is displayed. Moreover, the npm community
is innovation friendly and broadly experiments with and adopts
developer services including cloud-based continuous integration
[20], [21].

SonarQube claims to be one of the leading tools for
continuously inspecting code quality and security and guiding
development teams in code reviews [22]. SonarQube calculates
several metrics such as: lines of code, complexity, coverage,
false positive issues, code smells and vulnerabilities. The
analysis is violation-based and examines the health of the
code according to a set of rules. If the code violates these
coding rules, SonarQube reports this as an ‘issue’. There are
three main issue domains in SonarQube [23]:

« Maintainability: Commonly referred to as technical debt,
maintainability issues are reported as ‘code smells’ which
may need to be addressed in the future.

« Reliability: Referred to as bugs in the code, reliability
issues are critical programming errors that may be thrown
at run-time.

‘ Data from NPM J

) 4

Calculation of Technical Debt
using SonarQube

>

Analysis of results from NPM and

SonarQube

Fig. 1: Empirical study workflow.

o Security: referred to as vulnerabilities, are flaws in
programs that can lead to misuse and exploitation of
the application.

For the purpose of our work, we are interested in studying
the following two concepts as they relate to technical debt and
the evolvability of the packages we will analyse from npm.

o Code smells which are a maintainability issue that makes
the code difficult to maintain in the long run and increase
the overall technical debt.

o Bugs: issues that throw an error during run-time should
be fixed as soon as possible.

RQ1. To address the first research question, we collected a
data set of npm packages by mining all npm packages then kept
only those that had at least two forks, contained metadata on
dependencies, dependents, and maintainers and had a link to a
GitHub repository. We are currently implementing a SonarQube
scanner pipeline to analyse our dataset and provide us with the
technical debt measurements we require to test our hypothesis.
The results from the SonarQube analysis will be collected
in an Excel file. We will apply open coding to these results
to explore the relationship between forked packages and the
amount of technical debt.

RQ2. To answer research question two, and gauge developer
perceptions we will perform an online survey targeting npm
maintainers and contributors of the most active packages. We
have a cut off period of 100 days of updates given that
developers may clearly recall their reasoning behind intent
of code, data modified in code, owners of files, files that
rarely/often changed, recent changes etc within that time period
following work done by Kruger et al. [24].

IV. EXPECTED RESULTS

As we report on our findings about the intersection between
forking, variants and technical debt, this work will be useful in
generating knowledge about the problem where the literature
does not provide much insight. We will report on the amounts
and types of technical debts contained in the npm packages and

Github repositories we study. In addition, we will motivate the
need for more studies on the nature of requirements in forking
and whether requirements are a justification for forking.

ACKNOWLEDGMENT

This work is supported by Flanders Make vzw, the strategic
research centre for the manufacturing industry.

[1]

[3]

[4]
[5

=

[6

—

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in 2013 17th European Conference on Software Maintenance and
Reengineering, 2013, pp. 25-34.

J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, “Managing forked
product variants,” in SPLC ’12, 2012.

N. A. Emnst, S. Easterbrook, and J. Mylopoulos, “Code forking in open-
source software: a requirements perspective,” ArXiv, vol. abs/1004.2889,
2010.

W. C. Lim, “Effects of reuse on quality, productivity, and economics,”
IEEE Software, vol. 11, no. 5, pp. 23-30, 1994.

P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz, “An empirical
study of software reuse vs. defect-density and stability,” in Proceedings
of the 26th International Conference on Software Engineering, ser. ICSE
’04. USA: IEEE Computer Society, 2004, p. 282-292.

R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 385-395. [Online].
Available: https://doi.org/10.1145/3106237.3106267

“Npm docs,” https://docs.npmjs.com/about-npm, accessed October 2020.
K. H. Fung, A. Aurum, and D. Tang, “Social forking in open source
software: An empirical study,” in CAiSE Forum, 2012.

S. Zhou, S. Stanciulescu, O. LeBenich, Y. Xiong, A. Wasowski, and
C. Kistner, “Identifying features in forks,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), 2018, pp.
105-116.

S. Zhou, B. Vasilescu, and C. Kistner, “How has forking changed in
the last 20 years? a study of hard forks on github,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 268-269. [Online].
Available: https://doi.org/10.1145/3377812.3390911

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
Technical Debt in Software Engineering (Dagstuhl Seminar 16162),”
Dagstuhl Reports, vol. 6, no. 4, pp. 110-138, 2016. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2016/6693

G. Robles and J. M. Gonzalez-Barahona, “A comprehensive study of
software forks: Dates, reasons and outcomes,” in OSS, 2012.

L. Nyman, T. Mikkonen, J. Lindman, and M. Fougere, “Perspectives on
code forking and sustainability in open source software,” in 8th IFIP WG
2.13 International Conference, OSS 2012, Hammamet, Tunisia, September
10-13, 2012. IFIP Advances in Information and Communication, ser.
IFIP Advances in Information and Communication. Springer, 2012,
pp. 274-279, ei UT-numeroa 27.8.2013
Contribution: organisa-
tion=o0hj,FACT1=1
Publisher name: Springer.

L. Nyman and J. Lindman, “Code forking, governance, and sustainability
in open source software,” Technology Innovation Management Review,
vol. 3, pp. 7-12, 2013.

R. Viseur, “Forks impacts and motivations in free and open source
projects,” International Journal of Advanced Computer Science and
Applications, vol. 3, 2012.

J. Businge, M. Openja, S. Nadi, E. Bainomugisha, and T. Berger,
“Clone-based variability management in the android ecosystem,” in 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME). Los Alamitos, CA, USA: IEEE Computer Society, sep 2018,
pp. 625-634. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ICSME.2018.00072

J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why
and how developers fork what from whom in github,” Empirical Softw.
Engg., vol. 22, no. 1, p. 547-578, Feb. 2017. [Online]. Available:
https://doi.org/10.1007/s10664-016-9436-6

(18]

[19]

[20]

[21]

(22]

[23]

[24]

E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR '16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 351-361.
[Online]. Available: https://doi.org/10.1145/2901739.2901743

C. Bogart, C. Kistner, J. Herbsleb, and F. Thung, “How to break an api:
Cost negotiation and community values in three software ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New York,
NY, USA: Association for Computing Machinery, 2016, p. 109-120.
[Online]. Available: https://doi.org/10.1145/2950290.2950325

A. Trockman, S. Zhou, C. Kistner, and B. Vasilescu, “Adding sparkle to
social coding: An empirical study of repository badges in the npm
ecosystem,” in 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), 2018, pp. 511-522.

S. Mirhosseini and C. Parnin, “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2017. IEEE Press, 2017, p. 84-94.
“About sonarqube,” https://www.sonarqube.org/about, accessed October
2020.

“Code quality - sonarqube,” https://www.sonarsource.com/why-us/
code-quality/, accessed October 2020.

J. Kriiger, “What developers (care to) recall: An interview survey on
smaller systems,” 2020.

https://doi.org/10.1145/3106237.3106267
 https://docs.npmjs.com/about-npm
https://doi.org/10.1145/3377812.3390911
http://drops.dagstuhl.de/opus/volltexte/2016/6693
https://doi.ieeecomputersociety.org/10.1109/ICSME.2018.00072
https://doi.ieeecomputersociety.org/10.1109/ICSME.2018.00072
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.1145/2950290.2950325
https://www.sonarqube.org/about
https://www.sonarsource.com/why-us/code-quality/
https://www.sonarsource.com/why-us/code-quality/

	Introduction
	Background
	Empirical Study Design
	Goal and Research Questions
	Study Setup and Data Collection

	Expected Results
	References

