Moldable Requirements

Nitish Patkar
Software Composition Group
University of Bern
Switzerland
Email: http://scg.unibe.ch/staff

Abstract—Separate tools are employed to carry out
individual requirements engineering (RE) activities.
The lack of integration among these tools scatters
the domain knowledge, making collaboration between
technical and non-technical stakeholders difficult, and
management of requirements a tedious task. In this
thesis, we argue that an integrated development envi-
ronment (IDE) should support various RE activities.
For that, distinct stakeholders must be able to effort-
lessly create and manage requirements as first-class
entities within an IDE.

With “moldable requirements,” developers create
custom hierarchies of requirements, and build tailored
interfaces that enable other stakeholders to create
requirements and navigate between them. Similarly,
they create custom representations of requirements
and involved domain objects to reflect various levels
of detail. Such custom and domain-specific representa-
tions assist non-technical stakeholders in accomplish-
ing their distinguished RE related tasks. The custom
interfaces make the IDE usable for non-technical
stakeholders and help to preserve requirements in one
place, closer to the implementation.

I. INTRODUCTION

Requirements engineering is a phase of the soft-
ware development lifecycle (SDLC), where user
requirements are collected and transformed into
system ones to be eventually implemented [1], [2].
User requirements are often written using natu-
ral language, domain-specific models, or informal
models [3], and they document the needs of the end-
users and other stakeholders. System requirements
are derived from user requirements with a detailed
description of what the system should do and are
usually modeled using formal or semi-formal meth-
ods and languages. Several techniques and tools
have sought to automate the RE process and enable
collaboration among stakeholders. There is a variety

of proprietary and open-source tools proposed in
the industry and academia to support distinct RE
activities. Analysis of these tools revealed that:
(1) most of them are intended to support a particular
RE activity and have a specific target audience,
and (2) they offer limited support for IDEs, often
through plugins. Due to such specialization of the
tools for one or few particular RE activities and dis-
tinct target audiences, requirements scatter through
many documents and are maintained in numerous
formats. Therefore, facilitating collaboration in an
agile way among stakeholders also means making
the employed tools to interact with each other.

Imagine building an address book application
that allows users to create and add contacts to an
address book. Requirements for this application are
maintained in different formats and in several tools,
from high-level ones, such as epics in a platform
like Jira,'down to concrete scenarios that describe
various operations in a separate tool like Cucum-
ber.? In addition to specifying requirements, the
domain experts need to verify whether the require-
ments are accurately implemented. They achieve
it either by running tests or by interacting with a
full-functioning user interface (UI). Both behavior
verification approaches have limitations, as testing
merely asserts how much functionality is actually
working by hiding other details, and building a
sophisticated UI costs time and effort.

As a solution, researchers have proposed to spec-
ify requirements directly in an IDE. However, this

I<Jira”, accessed November 6, 2020 at https://www.
atlassian.com/software/jira

2«Cucumber”, accessed November 6, 2020 at https://
cucumber.io/

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://cucumber.io/
https://cucumber.io/

research field is less explored compared to propos-
ing new tools and techniques and exhibits several
challenges that need attention: (1) understanding
different requirements formats and their correspond-
ing characteristics to determine the usefulness for
distinct stakeholders, and (2) determining efficient
navigation strategies between requirements to make
them accessible to all stakeholders. We argue that
requirements should be specified, maintained, and
implemented as first-class entities within an IDE
to truly justify the integrated nature of IDEs. To
support the RE process and to engage non-technical
stakeholders, the IDE must enable effortless cre-
ation and maintenance of requirements. For that,
developers must build requirements hierarchies, i.e.,
model high-level formats, such as epics, and other
more specific formats, such as user stories as first-
class entities. Additionally, they must also provide
appropriate interfaces to create, manage, and link
the corresponding requirements to the implementa-
tion.

“Moldable requirements” is an approach that
can be implemented in any IDE. We suggest that
requirements hierarchies, as well as their represen-
tations, must be adapted (or molded) to suit the ap-
plication domain and project needs. Developers first
create custom requirements hierarchies. A sample
hierarchy of requirements to implement the address
book example might involve creating high-level
epics, system-specific use cases, user-centered user
stories, and concrete scenarios as first-class entities
in an IDE. Next, developers build interfaces, such
as graphical ones, that enable other stakeholders
to create, access, and navigate the corresponding
requirements. For example, for the address book
application, stakeholders can use buttons and forms
to create and save epics, use cases, efc. Like-
wise, they can use graph structures to navigate
from epics to associated user stories. Developers
also craft domain-specific representations for the
involved domain entities. Therefore, non-technical
stakeholders can inspect a contact with a contact
card representation built by the developers. Finally,
as requirements are created as first-class entities in
an IDE, it enables us to link them to the involved
live domain objects. In summary, both requirements

hierarchies and their representations are molded in
an IDE to suit the application and project context.
To realize this vision, we pose the following hy-
pothesis and aim to answer the following research
question.

Hypothesis. An IDE could be used to support
various RE activities given a mechanism to build
appropriate interaction interfaces for both technical
and non-technical stakeholders.

Research question. What features must an IDE
exhibit and what infrastructure needs to be built to
enable distinct stakeholders to actively participate
in the iterative RE process?

II. STATE-OF-THE ART

Researchers, through approaches such as user-
centered design, behavior-driven development
(BDD), and visual domain modeling, efc. have
attempted to: (1) facilitate agile collaboration
among stakeholders by proposing specification
formats that everybody in a team easily understands,
and (2) enable requirements specification in an
IDE, mostly through developing plugins. User
stories, originating from user-centered design,
define the application behavior from the end-user
perspective. They are widely used in practice
due to their nature and understandability. Often
user story management tools are isolated from
the development environment, which leads to
traceability issues. A recent study compared
five user story management tools to report how
well they satisfy functional requirements, such
as support for epic management and support for
testing [4]. Some of the proposed tools offer IDE
integration; however, the characteristics of the
available integration are not studied in the existing
research. A recent survey of 182 practitioners and
21 semi-structured follow-up interviews expressed
a necessity for better user story management
tools [5]. Similarly, BDD proposes non-technical
stakeholders to describe application behavior in a
constrained natural language format. The behavior
is tested by linking the behavior specification
to the implementation through an automatically
generated glue code [6]. The success of BDD

an ERequirementContainer(AddressBookApp) o

ViewDetails RequirementsTree StoryWall ~ MindMap ~ Raw Print Pick Examples

> Epic: Search address book Add 2 new contact
¥ Epic: Manage address book
v Use Case: (Titleindd a contact, Task: Add a new contact to address book)
v Use Story: (As a user, | want to add a contact) Empty John Doe
v Scenario: (Description: Add a new contact)
Example: Add a given contact to an address book occ SRS
Scenario: (Description: add a duplicate type address to a contact)
> Use Case: Title:Edit a contact n an address book Task Edit contact details)
> Use Case: Title:Remove a contact from address book, Task: Remove contact)

> Epic: Search address book

Generate

Edit Raw Print

an ABAddressBook o

Contactslist ~ Cards Raw Print Connections Meta

John Doe

+41 123456789
Hochschulstrasse 6 3012 Bern Switzerland

Jane Doe

Fig. 1: Moldable requirements approach

depends heavily on the employed tools [7], [8].
Our analysis revealed that many popular BDD
tools already support BDD workflow in IDEs
through plugins. However, these plugins offer
limited capabilities for specifying behavior as
they solely focus on textual specification formats.
Similarly, they provide limited opportunities for
non-technical stakeholders to verify the details
about the specified behavior as the tools mostly
output a test pass/fail status.

To tackle issues, such as ambiguities and in-
consistencies, inherent with natural language spec-
ifications, requirements modeling approaches sug-
gest using formal notations. There is an exten-
sive support for requirements and domain modeling
in IDEs [9], [10]. Model-driven approaches, such
as model-driven development (MDD) and model-
driven engineering (MDE), encourage expressing
the application domain using concepts that are
independent of underlying implementation tech-
nology, which facilitates communication between
team members [11]. However, such approaches have
received limited appreciation in practice due to
extensive required training and laborious efforts for
specifying detailed models [12].

III. MOLDABLE REQUIREMENTS

The term “moldable requirements” extends the
concept of “moldable development [13]” to refer
to an environment that enables distinct stakeholders
to specify requirements at different levels of detail
and with representations specific to a particular
application domain. Such a moldable environment
supports the creation of custom (i) requirements

hierarchies, and (ii) requirements representations.
Custom hierarchies make requirements navigable
from higher-level ones down to the involved domain
objects. Custom representations make the relation-
ships between requirements explicit and aid domain
experts in inspecting the modeled domain entities.

In the left-hand side window of Figure 1, a
user explores a requirements hierarchy for the toy
address book example, displayed in terms of epics,
use cases, user stories, and scenarios. This hier-
archy and the corresponding tree representation is
custom created by developers. This view enables
other stakeholders to effortlessly navigate between
requirements, as well as to gain a general overview
of the existing ones. The custom and context-aware
graphical widgets in the middle window enable non-
technical stakeholders to provide input parameters
to a scenario and verify the output upon running.
Here, a user selects an address book and a contact to
be added. The last window shows the resulting ad-
dress book object with a visual representation cus-
tom crafted by a developer. Such domain-specific
representation enables non-technical stakeholders to
inspect the details of the domain objects more effi-
ciently compared to a test passed/failed status. Also,
it eliminates the necessity to build a full-functioning
UI to verify the application behavior. Figure 2 illus-
trates the idea of custom representations. The tree
view from Figure 1 for the requirements hierarchy
is represented with another interactive visualization.
This graphical interface facilitates the creation and
navigation between epics, use cases, and user sto-
ries. In other words, it enables non-technical stake-

[] Glamorous Toolkit

gt Playground O x

+
an ERequii i pp) i @ o

View Details ~ RequirementsTree ~ MindMap StoryWall ~ Raw Print

> Epic: Search address book
¥ Epic: Manage address book
v Use Case: (Title:Add a contact, Task: Add a new contact to address book)
¥ Use Story: (As a user, | want to add a contact)
v Scenario: (Description: Add a new contact)
Example: Add a given contact to an address book
Scenario: (Description: add a duplicate type address to a contact)
> Use Case: (Title:Edit a contact in an address book , Task: Edit contact details)
¥ Use Case: (Title:Remove a contact from address book , Task: Remove contact)
> Use Story: (As a user, | want to remove an entire contact)
> Epic: Search address book

¥ x
an EEpic(Manage address book) i m o
rrenced Entities

MindMap Raw Print Conn ®@ © @ o

»©3°
be e
xe)

Fig. 2: Moldable requirements- multiple views

holders to create and access requirements without
any programming overhead.

A. Current and planned contributions

The following projects lead us to accomplish
the discussed vision for “moldable requirements”
approach.

RE tools survey. The study presents a comprehen-
sive overview of 112 RE tools proposed at the top
software engineering (SE) venues during the past
five years. We reviewed a total of 203 publications
and identified 112 tools that support one of the
several RE activities. The findings indicate a lack of
tools that support multiple RE activities. Likewise,
activities, such as requirements management, are
largely neglected in the studied tools.

Moldable scenarios. The study presents a review
of 14 popular BDD tools, reports their character-
istics regarding the support for input and output
formats and interfaces for distinct stakeholders in
an IDE. We observed that despite the recent grow-
ing adoption of practices enabling non-technical
stakeholders to write natural language specifica-
tions, the existing BDD tools are vastly developer-
oriented in the functionalities they offer. As a re-
sult, they poorly engage other stakeholders in the
BDD process. Commonly used BDD tools facilitate
linking textual specifications to the corresponding
implementation through the glue code. For behavior

verification these tools only display test passed/-
failed status as an output. We present the “moldable
scenarios” approach and an advanced prototype im-
plementation that demonstrates effective integration
of the BDD process into an IDE. Non-technical
stakeholders can leverage graphical widgets to build
complex domain objects and use those objects to
compose behavior tests. Subsequently, they run the
tests and inspect the output that is presented to them
with custom representations.

Survey of glue code properties in BDD tools. There
is little evidence in the existing literature how
much glue code is auto-generated by the BDD
tools and how much must be manually written
to connect behavior specification and respective
test code. Researchers have recently published two
datasets that contain open-source projects that use
BDD tools [7], [8]. We conduct a study that takes
a closer look at the characteristics of the glue code
provided by the BDD tools in these projects.

Moldable artifacts. There is a lack of research
that studies the characteristics of the numerous
requirements and software artifacts to understand
their suitability for distinct stakeholders and an-
alyze their flow within the SDLC. We present a
comprehensive overview of 62 RE artifacts and
discuss their characteristics, such as format, nature,
phases of origin, and usage. We observed that
several artifacts, e.g., story wall, act as containers

for other artifacts, e.g., story cards. Similarly, a lot
of artifacts are produced during the requirements
gathering and design phases, but most of them
are used during the development and maintenance
phases. To simplify artifacts management across
isolated tools, we present an advanced prototype
implementation of an approach, wherein we model
a selection of artifacts in an IDE.

Living user stories. There are several tools proposed
for agile project management that specifically facil-
itate user story creation, editing, and management.
Existing studies have attempted to identify func-
tional requirements for such tools and consequently
classified them to see if they fulfill these require-
ments. However, none of the studies tried to analyse
the support of such tools within IDEs. This project
reviews a selection of user story management tools
to uncover their limitations regarding support in
IDEs. A prototype implementation demonstrates a
model of user story wall to manage user stories in
an IDE.

Moldable graphical actor modeling. A lot of graph-
ical modeling tools are proposed and used in prac-
tice. This project studies the characteristics of a
selection of graphical modeling tools. In particular,
we take a comprehensive look at their support
in an IDE and bi-directional change propagation
mechanism they provide. We present an advanced
prototype implementation of an approach that en-
ables non-technical stakeholders to graphically cre-
ate actors of a domain in an IDE. The actors are
then iteratively given behavior to send each other
messages to accomplish a task. The corresponding
code is automatically generated and kept up-to-date
with the modeled actors.

IV. CONCLUSION

“Moldable requirements” enables both technical
and non-technical stakeholders to participate in re-
quirements engineering and modeling processes by
providing them appropriate and engaging interac-
tion possibilities within an IDE. This approach and
corresponding prototype implementation will allow
researchers to think of issues, such as traceability,

from a different perspective and simplify the re-
quirements management.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support
of the Swiss National Science Foundation for the
project “Agile Software Assistance” (SNSF project
no. 200020-181973, Feb. 1, 2019 - April 30, 2022).

REFERENCES

[1] I. Sommerville, “Software engineering 9th edition,” ISBN-
10, vol. 137035152, p. 18, 2011.

[2] M. dos Santos Soares, J. Vrancken, and A. Verbraeck,
“User requirements modeling and analysis of software-
intensive systems,” Journal of Systems and Software,
vol. 84, no. 2, pp. 328-339, 2011.

[3] M. Luisa, F. Mariangela, and N. I. Pierluigi, “Market
research for requirements analysis using linguistic tools,”
Requirements Engineering, vol. 9, no. 1, pp. 40-56, 2004.

[4] S. Dimitrijevi¢, J. Jovanovi¢, and V. Devedzi¢, “A compar-
ative study of software tools for user story management,”
Information and Software Technology, vol. 57, pp. 352—
368, 2015.

[5]1 G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and
S. Brinkkemper, “The use and effectiveness of user sto-
ries in practice,” in International working conference on
requirements engineering: Foundation for software quality.
Springer, 2016, pp. 205-222.

[6] M. Wynne, A. Hellesoy, and S. Tooke, The cucumber book:
behaviour-driven development for testers and developers.
Pragmatic Bookshelf, 2017.

[71 A.Z. Yang, D. A. da Costa, and Y. Zou, “Predicting co-
changes between functionality specifications and source
code in behavior driven development,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repos-
itories (MSR). 1EEE, 2019, pp. 534-544.

[8] F. Zampetti, A. Di Sorbo, C. A. Visaggio, G. Canfora,
and M. Di Penta, “Demystifying the adoption of behavior-
driven development in open source projects,” Information
and Software Technology, p. 106311, 2020.

[91 V. Viyovi¢, M. Maksimovi¢, and B. Perisi¢, “Sirius: A
rapid development of dsm graphical editor,” in /EEE 18th
International Conference on Intelligent Engineering Sys-
tems INES 2014. 1EEE, 2014, pp. 233-238.

[10] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer,
J. Deantoni, and B. Combemale, “Execution framework
of the gemoc studio (tool demo),” in Proceedings of the
2016 ACM SIGPLAN International Conference on Software
Language Engineering, 2016, pp. 84—89.

[11] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven
software engineering in practice,” Synthesis lectures on
software engineering, vol. 3, no. 1, pp. 1-207, 2017.

[12] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state
of practice in model-driven engineering,” IEEE software,
vol. 31, no. 3, pp. 79-85, 2013.

[13] A. Chis, Moldable tools. Lulu. com, 2016.

