
Inlining Control-Flow Jumps in Library Usage
Graphs of Legacy Code

Ruben Opdebeeck
Software Languages Lab, VUB

Brussels, Belgium
ropdebee@vub.be

Johan Fabry
Raincode Labs

Brussels, Belgium
johan@raincode.com

Coen De Roover
Software Languages Lab, VUB

Brussels, Belgium
cderoove@vub.be

I. PRESENTATION ABSTRACT

A lot of the world today still runs on legacy code, yet a vast
amount of research focuses on contemporary programming
languages. For example, research involving mining usages of
software libraries, such as code recommendation, API misuse
detection, and library usage pattern mining, rarely considers
legacy codebases, instead choosing to focus on more modern
languages, like Java or JavaScript. However, for legacy code,
and especially in the field of code rejuvenation, establishing
a good understanding of a library and the ways in which it is
used, is vital. A potential strategy to achieve this is to collect a
large number of examples of library usage, and subsequently
employ pattern mining to isolate those usages that frequently
occur in a codebase. In this presentation abstract, we will
present an approach to extract whole-program graph-based
library usage models for COBOL codebases.

Various techniques to apply library usage pattern mining
on codebases already exist today. Of those, extracting so-
called graph-based object usage models (groums) [1] from a
codebase, and using frequent subgraph mining, is a promising
avenue. Such groums represent the control and data flow of a
method, focusing specifically on library calls. In general, such
groums contain call nodes, representing the method that is
called, and data nodes, representing unique data values in the
program. Control-flow edges link together different call nodes
in the order in which they appear, and any branches in control
flow would be represented by multiple outgoing control-flow
edges in the graph. Definition and use edges link a data node
to the call node that uses it as an argument, or produces it as
a return value, respectively.

However, constructing groums for legacy languages such as
COBOL is not a straightforward process, as there are multiple
challenges to address. For example, libraries and library calls
for Java programs are well-understood concepts, yet this is
not the case for COBOL. We define a library call as any
call to an external program which is explicitly marked as a
library. Moreover, deciding at which granularity to extract such
groums is a straightforward choice in OO languages, where
groums often represent a single method. For COBOL, this
choice is not as easy. Extracting groums at the granularity
of a single paragraph would lead to too small graphs, since
paragraphs are often very small units of code. Instead, we

decided to extract groums for a whole program.
This brings with it a new challenge of handling inter-

paragraph control flow. There are three ways that a COBOL
paragraph can transfer control to another paragraph. First,
under normal execution, when the end of a paragraph is
reached, control passes to the next paragraph in the program.
Second, when a GOTO X statement is encountered, control
jumps to paragraph X and resumes normal execution from
there. Last, a PERFORM X THRU Z statement passes control
to paragraph X and resumes execution from there, up until
the last statement of paragraph Z. After this last paragraph is
executed, control is passed back to the statement following the
PERFORM statement. Importantly, following a GOTO while a
PERFORM is active still retains this “returning” behaviour.

The approach that we will present handles such control flow
jumps using a two-phase graph construction process and graph
inlining. In the first phase, we construct intermediate groums
for each paragraph individually. These intermediate graphs
contain auxiliary nodes to represent the points in the program
where control would jump. In the second phase, we apply
inlining on the intermediate graph to replace the auxiliary
nodes by the graph of the paragraph that would be executed.
In addition, we keep a jump table to handle the jumps that
occur at the end of a performed paragraph, and a jump stack
to eliminate any iteration caused by the jumps.

The groum extractor thus produces graphs that describe the
control and data flow of a whole COBOL program. Such
graphs can be shipped to a frequent subgraph mining algo-
rithm, such as the one used in BigGroum [2], to infer patterns
in the usage of libraries. Such patterns may prove useful in
re-engineering a library to a modern programming language.
Furthermore, to aid in the comprehension of complex COBOL
programs, an interactive groum visualisation tool could be
most useful. Such a tool is left as future work.

REFERENCES

[1] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-Based Mining of Multiple Object Usage Patterns,” in
Proc. 7th joint meeting of the European Software Engineering Conf. and
the ACM SIGSOFT Int. Symp. on Foundations of Software Engineering
(ESEC/FSE ’09). ACM, 2009, pp. 383–392.

[2] S. Mover, S. Sankaranarayanan, R. B. P. Olsen, and B.-Y. E. Chang,
“Mining Framework Usage Graphs from App Corpora,” in Proc. 25th
Int. Conf. on Software Analysis, Evolution and Reengineering (SANER
’18). IEEE, 2018, pp. 277–289.

1


