Structural Change Distilling of Ansible Roles

Ruben Opdebeeck, Ahmed Zerouali, Camilo Veldzquez-Rodriguez, Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium
{ropdebee, azeroual, cavelazqg, cderoove}@vub.be

I. PRESENTATION ABSTRACT

A growing number of cloud-native applications are deployed
and managed using Infrastructure as Code (IaC), a practice
involving domain-specific languages to automatically and re-
liably create and manage complex digital infrastructures. One
of the activities in deploying such infrastructures is configu-
ration management of the infrastructure’s machines. This may
include installing and configuring software dependencies such
as MySQL, Apache, nginx, efc. There exist numerous IaC
languages that enable this activity, such as Ansible, one of the
most popular in use today.

Ansible provides a concept called roles, which are reusable
collections of configuration tasks and variables. The Ansible
Galaxy ecosystem offers a catalogue of more than 25.000
roles, which can be imported by an infrastructure developer
to fulfil a goal in their infrastructure deployment. The primary
part of a role are its trasks, which are a series of steps that
are executed on an infrastructure machine to make it reach
the desired state, and its variables, which can be used to
parametrise the behaviour of the tasks. For example, a role that
installs and configures nginx may include tasks to install the
nginx package on various OS families, tasks to set up the nginx
configuration, and variables to customise the configuration
values. As such, roles can be considered similar to libraries.

Since roles essentially consist of code, just like libraries in
general-purpose programming languages, their code evolves.
It is often necessary to extract the changes that were made
to this code after the fact, e.g., for change pattern mining,
incremental static analysis, efc. For general-purpose program-
ming languages, the practice of change distilling is well-
understood. Tools such as GumTree [1], ChangeDistiller [2],
and ChangeNodes [3] can be used to extract changes from
tree representations of source code. However, these tools work
on generic representations of code, such as generic abstract
syntax trees, and offer few opportunities to employ domain-
specific knowledge, which may be beneficial for Ansible roles.
Moreover, these tools can only extract generic changes, such
as the addition or removal of a node, an edit of a node’s value,
or the relocation of a subtree. Classifying the changes in terms
of which elements were changed, is left to the user of the tool.

In this presentation abstract, we will present a domain-
specific change distilling algorithm for Ansible roles, which
operates on a structural representation of roles. This structural
representation consists of the main elements that make up
a role, e.g., its tasks, variables, keywords defined on tasks,
blocks of tasks, efc. As such, it can disregard syntactical refac-

torings that have no effect on the semantics of the role. The
algorithm extracts changes belonging to one of 41 different
change types, created orthogonally from combinations of one
of the four generic change kinds described above, and the
element that has been changed. Examples include the addition
of a task, an edit to the value of a variable, the removal of a
block of tasks, etc.

The algorithm is implemented as a pair-wise depth-first
traversal of two structural models for two versions of a role.
In general, any subtree that is present in the first version, but
not in the second, is extracted as the addition of an element,
and vice versa for removal. During backtracking, the sets
of additions and removals of children are compared to find
relocations of subtrees to another position in the tree. However,
when a subtree is slightly edited, it is undesirable to represent
this as a pair of an addition and removal, and thus we employ
fuzzy comparisons by means of similarity scores. This also
allows the algorithm to distil a relocation of an edited element.

The domain specificity stems from the similarity functions,
which are customised for many different element types. For
example, the similarity of two tasks is defined in terms of the
weighted average of the similarities of its keywords. We assign
larger weights to keywords that are deemed more important
for the task’s semantics, such as the action it performs, its
arguments, and keywords that have an effect on control flow.
Keywords that have little to no semantic effect, such as a task’s
tags, are assigned smaller weights. As such, two tasks with the
same action but different tags are a stronger match than two
tasks with the same tags but different actions.

We have previously applied our algorithm in an empirical
study of the versioning practices in the Ansible Galaxy ecosys-
tem [4]. In future work, we plan to use the change distiller
to predict defect-inducing commits. We are also planning
to extend the structural representation to support Ansible
playbooks, as well as other [aC languages.

REFERENCES

[1] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus,
“Fine-grained and accurate source code differencing,” in Proc. 29th
ACM/IEEE Int. Conf. on Automated Software Engineering (ASE14), 2014.

[2] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling: Tree
differencing for fine-grained source code change extraction,” IEEE Trans.
on Soft. Eng., vol. 33, no. 11, pp. 725-743, Nov. 2007.

[3] R. Stevens and C. De Roover, “Extracting executable transformations
from distilled code changes,” in Proc. 24th Int. Conf. on Software
Analysis, Evolution and Reengineering (SANER17), 2017.

[4] R. Opdebeeck, A. Zerouali, C. Veldzquez-Rodriguez, and C. De Roover,
“Does infrastructure as code adhere to semantic versioning? an analysis of
ansible role evolution,” in Proc. 20th IEEE Int. Working Conf. on Source
Code Analysis and Manipulation (SCAM 2020), 2020.



